CO CHATTER

APRIL 2021

VOLUME B21 • ISSUE 2

WOOD COUNTY AMATEUR RADIO CLUB

President	KG8FH/W8PSK	Jeff Halsey/Loren Phillips
Vice President	KE8CVA	Terry Halliwill
Secretary	N1RB	Bob Boughton
Treasurer	KD8NJW	Jim Barnhouse
Board Member	WB8NQW	Bob Willman

No \$35 FCC Fee Yet

The \$35 license application fee, when it becomes effective, would apply to new, modification (upgrade and sequential call sign change), renewal, and vanity call sign applications, as well as applications for a special temporary authority (STA) or a rule waiver. All fees will be per application. Administrative updates, such as a change of mailing or email address, are exempt. It is expected that such fees will not become effective before summer 2021.

13 Colonies Adds Station

From ARNewsline

Fans of the popular 13 Colonies Special Event will be happy to learn there's a new bonus station and a new

design for the QSL cards. France, which played a key role in the American Revolution as the Continental Army's primary ally, will also provide some major assistance in this year's 13 Colonies Special Event.

Ken Villone, KU2US, manager of the popular on-air celebration, has announced that TM13COL will be operating from France and joining the other stations as one of the bonus contacts. Ken said Didier, F5OGL, asked whether he could represent France in the July event, and said five other hams will also be willing to become on-air participants. They are joining the other overseas bonus station GB13COL, which is always popular with operators in the U.S. and Europe.

continued on p. 4

Net Check Ins

net che	
Mar 2	Traffic: 0
N1RB	(NCS)
KD8RNO	
N8MSU	
KA8VNG	
WE8TOM	
WD8JWJ	
WD8LEI	
WB8NQW	
KG8FH	
KE8CVA	
KC8EKT	
KD8NJW	
KB8YRS	
K8BBK	
WD8PIC	
KD8VWU	
WD8ICP	(17)
Mar 9	Traffic: 0
KG8FH (N	CS)
KE8CVA	
KD8NJW	
WB8NQW	
KD8RNO	
N1RB	
KA8VNG	
KE8CUZ	
N1LB	(10)
W8MSW	(10)
Mar 16	Traffic: 0
N1RB	(NCS)
KE8CVA	
KG8FH	
WD8JWJ	
KD8NJW	
WB8NQW	

Brain Teasers

- 1. What term describes station output (including the transmitter, antenna and everything in between), when considering transmitter power and system gains and losses?
 - a.) power factor
 - b.) half-power bandwidth
 - c.) effective radiated power
 - d.) apparent power

2. In an FM phone signal having a maximum frequency deviation of 3000 Hz either side of the carrier frequency, what is the modulation index when the modulating frequency is 1000 Hz?

- **a.)** 3
- **b.)** 0.3
- **c.)** 3000
- **d.)** 1000
- 3. What is the easiest voltage amplitude dimension to measure by viewing a pure sine wave signal on an oscilloscope?
 - a.) peak-to-peak voltage
 - **b.)** RMS voltage
 - c.) average voltage
 - d.) peak positive voltage

April Contests

The contest lineup for the month of April is given below. Please note that the WARC bands (60, 30, 17 and 12 m) are <u>never</u> open to contesting.

WANG Danus (00, 50, 17 and 12 m) a	•	shitootinig.
Apr 3-4	1400 to 0200 Z	160 m to 10 m
Louisiana QSO Party		all modes
Apr 3-4	1400 to 0200 Z	160 m to 10 m
Mississippi QSO Party		all modes
Apr 3-4	1400 to 2200 Z	80 m to 10 m
Florida State Parks OTA		Call modes
Apr 3-4	1500 to 1500 Z	160 m to10 m
SP (Poland) DX 'test		CW/SSB
Apr 7	1700 to 2000 Z	2 m
VHF FT-8 Activity 'test		Digital
Apr 10-11	0700 to 1300 Z	160 m to 10 m
JIDX (Japan) 'test		CW
Apr 10-11	1200 to 1200 Z	160 m to 10 m
OK/OM (Czech-Slovakia) DX 'test		SSB
Apr 10-11	1300 to 2200 Z	160 m to 10 m
Nebraska QSO Party		all modes
Apr 10-11	1400 to 0200 Z	160 m to 10 m
New Mexico QSO Party		all modes
Apr 10-11	1800 to 1800 Z	160 m to 10 m
North Dakota QSO Party		all modes

1	Net Cheo	k Ins
	WE8TOM	
	KA8VNG	
	KD8RNO	
	KE8CUZ	
	WD8ICP	
	KE8RJZ-Ch	ance
	N8RAC-Guy	/ (14)
Mar	23	Traffic: 0
	KD8NJW	(NCS)
	KE8CUZ	
	K8BBK	
	KE8CVA	
	KG8FH	
	WD8LEI	
	WB8NQW	
	KE8OGV	
	KD8RNO	
	KA8VNG	
	N1RB	(11)
Mar	30	Traffic: 0
	WB8NQW	(NCS)
	WD8LEI	
	WD8JWJ	
	KD8RNO	
	W8PSK	
	N1RB	
	KA8VNG	
	WE8TOM	
	N8VNT	
	KD8VWU	
	KE8CVA	
	KC8EKT	
	KG8FH	
	K8BBK	
	WD8ICP	(10)
Derei	NM8W	(16)
Brair	n Teaser answers:	(E) 1-c, 2-a, 3-a

13 colonies—from p. 1

QSL cards are also getting a different look this year. They will feature ships, a popular image used about eight years ago. The U.S. bonus station WM3PEN, operating for its 11th year, will feature the USS United States, one of the first frigates built in Philadelphia for the US Navy. Each state will select a Colonial-era ship relevant to their history.

The event will be held from July 1st to July 7th. A certificate will also be available for successful That success comes in big numbers too: contacts. last year more than 202,000 QSOs were made.

History of the Capacitorthe Modern Era

Steven Dufresne in Hackaday

The pioneering years in the history of capacitors was a time when capacitors were used primarily for gaining an early understanding of electricity, predating the discovery even of the

Marconi with transmitting apparatus,

electron. It was also a time for doing parlor demonstrations. such as having a line of people holding hands and discharging a capacitor through them. The Published in LIFE [Public domain], modern era of capacitors begins in the late 1800s

with the dawning of the age of the practical application of electricity, requiring reliable capacitors with specific properties. continued on p. 6

via Wikimedia Commons

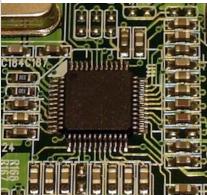
WCARC Weekly NetTuesdays at 2100 all year147.18 MHz 67 Hz PLNet Control RosterApr 6N1RBApr 13KG8FHApr 20KD8VWUApr 27KD8NJWMay 4WB8NQWMay 11N1RB	NEXT MEETING Business Meeting Business Meeting Monday April 12 TIME: 7:30 PM/7:00 EB PLACE: Woodland Mall Food Ct. 1234 N. Main St. Bowling Green, OH
10 meter Net	Fusion Net
10 meter Net <i>informal group</i>	Fusion Net Thursday
informal group	Thursday
<i>informal group</i> <i>meets</i>	Thursday @ 19:30

Leyden jars

One such practical use was in Marconi's wireless spark-gap transmitters, starting just before 1900 and into the first and second decade. The transmitters built up a high voltage for discharging across a spark gap, and so used porcelain capacitors to withstand that voltage. High frequency was also required. These were basically Leyden jars and to get the required capacitances took a lot of space.

Mica

In 1909, William Dubilier invented smaller mica capacitors which were then used on the receiving side for the resonant circuits in wireless hardware.


Early mica capacitors were basically layers of mica and copper foils clamped together as what were called "clamped mica capacitors". These capacitors weren't very reliable though. Being just mica sheets pressed against metal foils, there were air gaps between the mica and foils. Those gaps allowed for oxidation and corrosion, and meant that the distance between plates was subject to change, altering the capacitance.

In the 1920s silver mica capacitors were developed, ones where the mica is coated on both sides with the metal, eliminating the air gaps. With a thin metal coating instead of thicker foils, the capacitors could also be made smaller. These were very reliable. Of course we

didn't stop there. The modern era of capacitors has been marked by one breakthrough after another for a fascinating story. Let's take a look.

ceramic

In the 1920s mica wasn't as abundant in Germany and so they experimented with new families of ceramic capacitors, finding that titanium dioxide (rutile) had a linear temperature dependence of

capacitance for temperature compensation and could replace mica capacitors. They were produced in small quantities

MLCCs around a at first and microprocessor. By Elcap larger quantities [CC BY-SA 3.0], in the 1940s. via <u>Wikimedia Commons</u> They consisted

of a disc metallized on both sides.

To get higher capacitance, another ceramic, barium titanate was used, as it had 10 times the permittivity of mica or titanium dioxide. However, it had less

stable electrical parameters and could replace mica only where stability

Electrolytic capacitor was less important. This property was improved after World War II.

continued on p. 7

An American company launched in 1961 pioneered the multi-layer ceramic capacitor (MLCC), which was more compact and had higher capacitance. More than 10¹² barium-titanate MLCCs are produced each year.

aluminum electrolytic

In the 1890s, Charles Pollak found that an oxide layer on an aluminum anode was stable in a neutral or alkaline solution and was granted a patent in 1897 for a borax electrolyte aluminum capacitor. The first "wet" electrolytic capacitors appeared in radios briefly in the 1920s but had a limited lifespan. They were called "wet" due to their high water content. They basically consisted of a container capacitor. By Epop [Public lead to larger with a metal anode immersed in a solution of borax or other electrolyte dissolved in water. The outside of the container acted as the other plate. These were used in large telephone exchanges to reduce relay noise.

The patent for the electrolytic capacitor's modern ancestor was filed in 1925 by Samual Ruben. He sandwiched a gel-like electrolyte between the oxide coated anode and the second plate, a metal foil, eliminating the need for a water filled container. The result was the "dry" electrolytic capacitor. Another addition was a paper space between the turns of the foils. All of this reduced the size and price significantly.

In 1936 the Cornell-Dubilier company introduced their aluminum electrolytic capacitors, including improvements such as roughening the anode surface to increase capacitance. The Hydra-Werke, an AEG company, began mass

production in Berlin, Germany at the same time.

After World War II, the a p i d development of radio and television

surface-mount tantalum technology Α domain], via <u>Wikimedia</u> production <u>Commons</u> quantities as

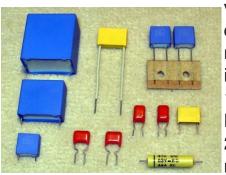
well as a variety of styles and sizes. Improvements included reducing leakage currents and equivalent series resistance (ESR), wider temperature ranges and longer lifespans by using new electrolytes based on organics. Further developments from the 1970s to the 1990s also included lowering leakage currents, further reduction in ESR and higher temperatures.

What became known as the "capacitor plague" occurred during the years 2000 to 2005, possibly due to the use of a stolen recipe but without certain

continued on p. 8

stabilizing substances leading to polymer film premature failure.

tantalum electrolytic


first manufactured for military purposes in particles. These were commonly used in the 1930s. These used wound tantalum the early 1900s as decoupling capacitors foils and a non-solid electrolyte. 1950s Bell Laboratories made the first During World War II, Bosch improved the solid electrolyte tantalum capacitors. They process and manufactured them by ground the tantalum to a powder and coating the paper with lacguer and using sintered it as a cylinder. At first a liquid electrolyte was used, but they then discovered that manganese dioxide could be used as a solid electrolyte.

Although Bell Labs made the fundamental inventions, in 1954 the Sprague Electric Company made improvements in the process, producing the first commercially viable tantalum solid Film capacitors. Elcap [CC-lacquer film electrolyte capacitors.

1975 saw the emergence of polymer tantalum electrolytic capacitors with much resulting in much smaller capacitors. This higher conductivity, with conductive can be considered the first polymer film polymers replacing the manganese capacitor. Research in plastic by organic dioxide leading to lower ESR. released their polymer tantalum capacitors further progress. In 1954 the first mylar in 1995 for SMDs (surface-mount devices) capacitor was one of those. Mylar was with Sanyo following suit in 1997.

and two such occurrences happened in terephthalate). 1980 and 2000/2001. The latter shock led metallized mylar film capacitor was to the development of niobium electrolytic produced. capacitors with manganese dioxide capacitors made with polyethylene, electrolyte delivering properties roughly polystyrene, polytetrafluoroethylene, PET the same as tantalum capacitors.

The metallized paper capacitor was patented in 1900 by G.F. Mansbridge. The metallizing was done by coating the Tantalum electrolytic capacitors were paper with a binder filled with metal In the in telephony (telecommunications.).

vacuum deposition of metal to coat it. Around 1954, Bell Labs made a 2.5µm-thick metallized

BY-SA 3.0], via Wikimedia separate from

the paper,

NEC chemists during World War II resulted in trademarked by Dupont in 1952 and is a Tantalum ore is subject to price shocks, very strong PET (polyethylene In 1954 a 12µm-By 1959, the list included continued on p. 9

April Contests-cont.

Apr 17-18 07	<i>00 to 0659 Z</i> 80 m to 10 m
YU (Serbia) DX 'test	CW/SSB
Apr 17-18 16	<i>00 to 0400 Z</i> 80 m to 10 m
Michigan QSO Party	all modes
Apr 17-18 14	<i>00 to 2000 Z</i> 160 m to 10 m
Texas State Parks OTA	all modes
Apr 17-18 06	<i>00 to 0559 Z</i> 80 m to 10 m
Worked All Provinces (China)	CW/SSB
Apr 17-18 09	<i>00 to 2359 Z</i> 80 m to 10 m
CQ MM (Russia) DX 'test	CW
Apr 17-18 18	<i>00 to 1800 Z</i> 160 m to 10 m
Ontario QSO Party	all modes
Apr 18 18	<i>00 to 2359 Z</i> 80 m to 10 m
ARRL Rookie Roundup	SSB
Apr 24-25 13	<i>00 to 1259 Z</i> 160 m to10 m
Helvetia DX 'test	all modes
Apr 24-25 16	<i>00 to 2159 Z</i> 40 m to 10 m
Florida QSO Party	all modes
<i>capacitors—from p. 8</i> and polycarbonate. By 1970, electric utilities were using film-foil capacitors without the paper.	

that, with capacitances in the thousands of farads. In the early 1950s researchers at General Electric used their background with fuel cells and rechargeable batteries to experiment with capacitors with porous carbon electrodes. This led to H. Becker patenting the capacitor as a "Low voltage electrolytic capacitor with porous carbon electrodes", not understanding the

Supercapacitors, Maxwell Technologies, Inc. [CC BY-SA 3.0], via <u>Wikimedia Commons</u>

principle behind it that lead to the extremely high capacity. GE didn't pursue it.

Standard Oil of Ohio (SOHIO) developed another version, and eventually licensed it in the 1970s to NEC who finally commercialized it under the trademarked name, supercapacitor. It was rated at 5.5 V and had capacitances up to 1F. The units were up to 5 cm³ in size and were used as backup power for computer memory.

Brian Evans Conway, professor emeritus at the University of Ottawa, worked on ruthenium oxide electrochemical capacitors from 1975 to

1980. In 1991, he described the difference between supercapacitors and batteries in electrochemical storage, giving a full explanation in 1999, while coining the term supercapacitor again.

Products and markets grew slowly with product names such as Goldcaps, Dynacap and PRI Ultra-capacitor, the latter being the first supercapacitor with low internal resistance, developed in 1982 by Pinnacle Research Institute (PRI) for military purposes.

Relatively recent developments on the market include lithium-ion capacitors, which dope the activated carbon anode with lithium ions. These have capacitances in the thousands of farads (4-digits) at around 2.7V.

conclusion

In closing, I should point out that there's no shortage of the usage of the term *condenser* rather than *capacitor*. So where does the term capacitor come from? That seems to be unknown, but the *Oxford English Dictionary* quotes from the 1922 BSI (British Standards Institution) *Glossary of Terms in Electrical Engineering* that says 'capacitor' is a 'new term' and suggests it be used to avoid confusion with the steam 'condenser'.

While that concludes our history of the capacitor, there's plenty more we're sure could be added based on the <u>large</u> <u>number of types of capacitors</u> alone.

WCARC 2021 Roster- 1st Qtr.

E-MAIL	barnhouse@buckeye-express.com	boughton@bgsu.edu	boughton@dacor.net	maximiliancunnings@gmail.com	jdavis@amplex.net	dicken@bgsu.edu	c my ta2s@yahoo.com	ddvorack@buckeye-express.com	cattlewalk@hotmail.com	dallas.fultz@gmail.com		jgruber@wcnet.org	<u>thalliwillsr@yahoo.com</u>	jhalsey@bgsu.edu	<u>larry53ham1@yahoo.com</u>	howies_mommy@yahoo.com	<u>ms1hunt@gmail.com</u>	johnson@wcnet.org	K8LL.ham@gmail.com	LKLOPFENSTEIN@woh.rr.com	k8jtk@yahoo.com	tkopcak@att.net	<u>k8ixl@lahote.com</u>	WE8TOM@nielmot.com	cmagrum001@woh.rr.com	W8ALM73@gmail.com	snmcewen@wcnet.org	jmmclaughlin@woh.rr.com	<u>lamplyter1@gmail.com</u>	ljphil@dacor.net	wroudeb@bgnet.bgsu.edu	tomsanderson@gmail.com	stossel@dacor.net	kstrick@amplex.net	w8cnj@yahoo.com	rweith@ps1kites.com	wild bill@amplex.net	blcksmth@reagan.com	eric@willmantech.com	unclelester1979@gmail.com
ZIP	43551	43402	43402	43402	43402	43402	33844	43614	43402	43402	43402	43402	43462	43402	43402	43402	43402	43463	43402	43402	44145	44145	43551	43413	43402	43402	43402	43457	43402	43402	43402	43551	43569	43402	43551	43402	43402	43402	43402	43402
ST	НО	НО	Ю	НО	Ю	НО	Ŀ	Н	Н	Н	Н	Н	Н	Н	Ю	НО	НО	НО	Н	Н	Н	Н	Н	Н	НО	НО	Ю	Ю	Ю	Ю	НО	НО	НО	НО	Ю	НО	НО	НО	НО	Ю
CITY	Perrysburg	Bowling Green	Bowling Green	Bowling Green	Bowling Green	Bowling Green	Haines City	Toledo	Bowling Green	Bowling Green	Bowling Green	Bowling Green	Rudolph	Bowling Green	Bowling Green	Bowling Green	Bowling Green	Stony Ridge	Bowling Green	Bowling Green	Westlake	Westlake	Perrysburg	Cygnet	Bowling Green	Bowling Green	Bowling Green	Risingsun	Bowling Green	Bowling Green	Bowling Green	Perrysburg	Weston	Bowling Green	Perrysburg	Bowling Green	Bowling Green	Bowling Green	Bowling Green	Bowling Green
STREET	1919 Hamilton Dr.	930 Champagne Ave.	930 Champagne Ave.	Apt 104, 451 Thurstin Ave.	10990 Newton Rd.	1066 Carol Rd	753 W. Main St. #250	2142 Sherwood	13389 Bishop Rd.	916 Melrose St	144 Stonegate Blvd.	920 MelroseSt.	13944 Defiance Pike	514 Rosewood Dr	8656 Kramer Rd.	8656 Kramer Rd.	17325 Haskins Rd.	P.O. Box 248	415 1/2 N Prospect St	605 S. Main St.	1497 Canterbury Rd.	1497 Canterbury Rd.	9742 Roachton	PO Box 252	1100 Christopher St.	43138 Cloverdale	1053 Pinewood Ct.	6230 County Rd 21	19477 Scott Rd	324 S. Grove St.	1374 Clough St.	107 Silver Maple Dr.	19758 Sand Ridge Rd.	16493 Euler Rd.	27484 Oregon Rd. #271	802 Brittany Ave	11065 Linwood Rd.	14118 Bishop Rd.	545 W. Poe Rd.	23 Trafalgar Bend
<mark>с</mark>	თ	ш	ш	⊢	ш	ш	⊢	ш	Ⴠ	ш	∢	ш	თ	٩	⊢	⊢	G	ш	ш	ш	ш	ш	∢	ш	ш	G	ш	თ	Ⴠ	ш	ш	ш	თ	ш	G	თ	ш	ш	⊢	⊢
CALL	WLN8DX	N1RB	N1LB	KE80CK	K8JU	WD8ICP	KN4LEH	KD8BIN	KE8PJM	K8DLF	WB8VUL	N8MSU	KE8CVA	KG8FH	N8VNT	KC8EKT	K4JQL	K3RC	K8LL	KC8PFP	K8JTK	N8ETP	K8IXL	WE8TOM	N8WN	WBALM	K8BBK	KC8FCE	KD8DWO	W8PSK	KC8IFW	NF8T	W8GGS	KA8CEH	WBCNJ	KE8QGV	WD8JWJ	WB8NQW	WD8LEI	KD8RNO
NAME	Barnhouse	Boughton	Boughton	Cunnings	Davis	Dicken	Dickey	Dvorack	France	Fultz	Gibson	Gruber	Halliwill	Halsey	Hasselman	Hasselman	Hunt	Johnson	Klakamp	Klopfenstein	Kopcak	Kopcak	Lahote	Leingang	Magrum	Manrow	McEwen	McLaughlin	Natchman	Phillips	Roudebush	Sanderson	Stossel	Strickland	Swinney	Weith	Wilkins	Willman	Willman	Wineland
#	1 Jim	2 Bob	3 Linda	4 Max	5 Jim	6 Chuck	7 Danny	Nohn	9 Russ	10 Dallas	11 Hoot	12 John S.	13 Terry	14 Jeff	15 Larry	16 Ruth	17 Michael	18 Bob	19 Stan	20 Rex	21 Jeff	22 Thomas	23 Greg	24 Tom	25 Craig	26 Allen	27 Steve	28 John	29 Ken	30 Loren	31 Wilfred	32 Tom	33 George	34 Kent	35 Roger	36 Roger	37 Bill	38 Bob	39 Eric	40 Lynn

FOR SALE Yaesu FT1XDR

will not connect to Wires-X. does all other FM and Fusion **ASKING:** \$100.00 **CONTACT:** WD8JWJ, Bill **E-MAIL:** wild_bill@amplex.net

WOOD COUNTY ARC P.O.BOX 534 BOWLING GREEN, OH 43402

